Abstract Algebra Cheat Sheet

16 December 2002
By Brendan Kidwell, based on Dr. Ward Heilman's notes for his Abstract Algebra class.
Notes: Where applicable, page numbers are listed in parentheses at the end of a note.

Def: A group is a nonempty set G together with a binary operation $*$ on $G \times G$ satisfying the following four properties:

1. G is closed under the operation * .
2. The operation $*$ is associative.
3. G contains an identity element, \mathbf{e}, for the operation $*$.
4. Each element in G has an inverse in G under the operation $*$.

Proposition 1: A group has exactly one identity element.
Proposition 2: Each element of a group has exactly one inverse element.
Proposition 3: $(a * b)^{-1}=b^{-1} * a^{-1} \quad \forall a, b \in(G, *)$.
Proposition 4: $\left(a^{-1}\right)^{-1}=a \quad \forall a \in(G, *)$.
Proposition 5: $\left(\mathbb{Z}_{n},+_{n}\right)$ is a group $\forall n \in \mathbb{N}$.
Proposition 6: In a group table, every element occurs exactly once in each row and exactly once in each column.

Def: The order of a group $(G, *)$ is the number of elements in the set G. (Written as $|G|$.) (36)
Def: A dihedral group of order $2 n$ is the set of symmetric transformations of a regular n-gon .
(Written as D_{n}.) (36)
Def: An abelian (or commutative) group has the property that $a * b=b * a \forall a, b \in(G, *)$. (37)
Def: $(H, *)$ is a subgroup of $(G, *)$ iff $H \in G$ and $(H, *)$ is a group under the same operation. (37) To show that $(H, *)$ is a subgroup, show that $H \in G$ and then show closure and existence of inverses.
Lagrange's Theorem: Let $(H, *)$ be a subgroup of a finite group, $(G, *)$. $|H|$ divides $|G|$.
Def: $\langle a\rangle=\left\{a^{0}, a^{1}, a^{-1}, a^{2}, a^{-2}, a^{3}, a^{-3} \ldots\right\}$ is the cyclic subgroup generated by a.
Def: The order of an element, a, is the order of $\langle a\rangle$.
Def: A cyclic group is a group that can be generated entirely by repeatedly combining a single element with itself. In other words, if for a cyclic group $G=\langle a\rangle$, then a is the generator of G.

Def: Prime Order Proposition. For every prime p, there is exactly one group of order p.
Proposition 8: Cancellation Laws. Let $a, b, c \in(G, *)$.

1. $(a * b=a * c) \rightarrow(b=c)$
2. $(b * a=c * a) \rightarrow(b=c)$
3. If G is abelian, $(a * b=c * a) \rightarrow(b=c)$

Proposition 9: The only solution to $a * a=a$ is $a=\boldsymbol{e}$.
Proposition 10: Let $a, b \in G$. If $a * b \neq b * a$, then $\boldsymbol{e}, a, b, a * b, b * a$ are all distinct elements. (50)

Proposition 11: Any non-abelian group has at least six elements. (51)
Def: The center of a group is $\mathrm{Z}(G)=\{$ all $g \in G$ such that $(g * a=a * g \quad \forall a \in G)\}$.
Proposition 12: $(\mathrm{Z}(G), *)$ is a subgroup of G. (52)
Def: Two integers, a and b, are relatively prime iff $\operatorname{gcd}(a, b)=1$. (54)
Def. $\forall n \in \mathbb{N}$, the set of units of $n, \mathbf{U}(n)$, is the set of all natural numbers relatively prime to n. (54)
Proposition 13: $\forall n \in \mathbb{N},\left(\mathbf{U}(n), \cdot{ }_{n}\right)$ is a group. (54)
Def: For any set S and subsets $A, B \in S$, the symmetric difference of A and B (written as $A \Delta B$) is the set of all elements that are in A or B, but are not in both A and B. In other words,

$$
A \Delta B=(A-B) \cup(B-A) .(55)
$$

Def: The power set of S (written as $\mathrm{P}(S)$) is the set of all subsets of S, including \varnothing and the original set S. (55)
Proposition 14: For any nonempty set $S,(\mathrm{P}(S), \Delta)$ is a group. (55)
Def: Let $(G, *)$ and (K, \circ) be two groups. Let f be a function from G to $K . f$ is a homomorphism (or operation preserving function) from $(G, *)$ to (K, \circ) iff $\forall a, b \in G \quad f(a * b)=f(a) \circ f(b)$. (59)
Proposition 15: Let $f: G \rightarrow K$ be a homomorphism. Let \boldsymbol{e} be the identity of $(G, *)$ and \boldsymbol{e} ' be the identity of (K, \circ). (60)

1. $f(\boldsymbol{e})=\boldsymbol{e}$,
2. $f\left(g^{-1}\right)=(f(g))^{-1} \quad \forall g \in G$
3. $f\left(g^{n}\right)=(f(g))^{n} \quad \forall n \in \mathbb{Z}$

Def: Given nonempty sets S and T, with $x, y \in S$, and a function $f: S \rightarrow T$ (63)

1. f is a one-to-one (1-1) function iff $(x \neq y) \rightarrow(f(x) \neq f(y))$.
2. f is onto T iff $\forall z \in T \quad \exists x \in S$ such that $f(x)=z$.

Proposition 16: Let $f: S \rightarrow T$ be an onto function. (65)

1. $f\left(f^{-1}(V)\right)=V \quad \forall V \subseteq T$
2. $W \subseteq f\left(f^{-1}(W)\right) \quad \forall W \subseteq S$

Proposition 17: Let f be a homomorphism from $(G, *)$ to (K, \circ). (68)

1. If $(H, *)$ is a subgroup of $(G, *)$, then $(f(H), \circ)$ is a subgroup of (K, \circ).
2. If (L, \circ) is a subgroup of (K, \circ), then $\left(f^{-1}(L), *\right)$ is a subgroup of $(G, *)$.

Def: (Using the previous example,) the image of H under f is $f(H)$. The inverse image of L under f is $f^{-1}(L)$. (68)

Proposition 18: Let f be a homomorphism from $(G, *)$ to $(K, \circ) . f$ is one-to-one iff $\operatorname{ker}(f)=\{\boldsymbol{e}\}$. (72)

Def: Two groups, $(G, *)$ and (K, \circ), are isomorphic iff there exists a one-to-one homomorphism f from $(G, *)$ onto (K, \circ)-that is, $f(G)=K$. In this case, f is called an isomorphism or isomorphic mapping. (73)
Proposition 19: Every finite cyclic group of order n is isomorphic to $\left(\mathbb{Z}_{n,}+_{n}\right)$ and every infinite cyclic group is isomorphic to $(\mathbb{Z},+)$. (75)

Proposition 20: Every subgroup of a cyclic group is cyclic. (76)

Theorem: If G is a finite group, p is a prime, and p^{k} is the largest power of p which divides $|G|$, then G has a subgroup of order p^{k}.
Def: A permutation is a one-to-one and onto function from a set to itself. (77)
Note: See pages 78 and 81 for examples of how to notate permutations.
Def: The set of permutations on $\{1,2,3, \ldots, n\}$ is written as S_{n}. (79)
Theorem 21: The set of all permutations together with composition, $\left(S_{n,}{ }^{\circ}\right)$, is a nonabelian group $\forall n \geq 3$. (79)
Theorem 22: The set of all permutations on a set S (its symmetries), together with composition, ($\operatorname{Sym} S, \circ$), is a group. (80)
Theorem 23 (Cayley's Theorem): Every group is isomorphic to a group of permutations. (82)
Proposition 24: Every permutation can be written as a product of disjoint cycles in permutation notation. (86)
Def: The length of a cycle in a permutation is the number of distinct objects in it. A cycle of length 2 is a transposition. (86)
Proposition 25: Every cycle can be written as a product of transpositions (not necessarily distinct). (87)
Def: A permutation is even (or odd) if it can be written as a product of an even (or odd) number of transpositions. (88)
Def: The subset of S_{n} which consists of all the even permutations of S_{n} is called the alternating group on n and is written as A_{n}. (90)
Def: Matrix multiplication, which is not commutative, is the standard way to combine matrices. To multiply a $\mathbf{2 \times 2}$ matrix: (102)

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right]
$$

Notes: A 2×2 matrix can be found to represent any linear transformation. The special matrix

$$
M=\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]
$$

when mulpilied on the left with a vector in \mathbb{R}^{2} will rotate it counterclockwise by the amount α :

$$
M X_{\text {initial }}=X_{\text {rotated }} .(100)
$$

Def: The inverse under multiplication of a $\mathbf{2 \times 2}$ matrix is computed as follows: (103)

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\frac{d}{a d-b c} & \frac{-b}{a d-b c} \\
\frac{-c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right]
$$

Def: The determinant of a $\mathbf{2 \times 2}$ matrix is computed as follows: (104)

$$
\operatorname{det}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=a d-b c
$$

Def: A matrix is invertible iff its determinant is nonzero. (104)
Theorem 29: The set of all invertible 2×2 made from elements of \mathbb{R}, together with matrix multiplication, forms a group, called the general linear group, which is written as $G L(2, \mathbb{R}) .(105)$

Def: The special linear group is the group of 2×2 matrices with determinants of 1 , written as $S L(2, \mathbb{R})$. (106)

Def: To get the transpose of a matrix, swap each element $a_{i, j}$ with the one on the opposite side of the main diagonal, $a_{j, i}$. The transpose of a matrix M is written M^{t}. (106)

Def: A matrix M is orthogonal iff $M^{t} M=I$. (106)
Theorem 30: The set of orthogonal 2×2 matrices with determinant 1 together with matrix multiplication form a the special orthogonal group, which is written as $S O(2, \mathbb{R})$. The set of orthogonal matrices together with matrix multiplication is also a group, the orthogonal group, which is written as $O(2, \mathbb{R})$. $S O(2, \mathbb{R})$ is a subgroup of $O(2, \mathbb{R})$. (107)
Proposition 31: For two matrices A and B, (107)

1. $(A B)^{t}=B^{t} A^{t}$
2. $\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{t}$
3. $\operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B$
4. $\operatorname{det}\left(A^{t}\right)=\operatorname{det} A$
5. $\operatorname{det}\left(A^{t} A\right)=\operatorname{det} A^{t} \cdot \operatorname{det} A=\operatorname{det} A \cdot \operatorname{det} A=(\operatorname{det} A)^{2}$

Fact 32: $\operatorname{SO}(2, \mathbb{R})=\left\{\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right] \quad \forall\right.$ angle $\left.\alpha\right\}$
Def: Given a set G and an operation $*:(113)$
G is a groupoid iff G is closed under *.
G is a semigroup iff G is a groupoid and $*$ is associative.
G is a semigroup with identity iff G is a semigroup and has an identity under $*$.
G is a group iff G is a semigroup and each element has an inverse under $*$.
Def: A ring, written $(R, *, \circ)$, consists of a nonempty set R and two opertaions such that (114)

- $(R, *)$ is an abelian group,
- ($R, \circ)$ is a semigroup, and
- the semigroup operation, \circ, distributes over the group operation, $*$.

Proposition 33: Let $(R,+, \cdot)$ be a ring. (115)

1. $0 \cdot a=a \cdot 0=0 \quad \forall a \in R$
2. $(-a) \cdot b=a \cdot(-b)=-(a \cdot b) \quad \forall a, b \in R$
3. $(-a) \cdot(-b)=a \cdot b \quad \forall a, b \in R$

Def: A ring with identity is a ring that contains an indentity under the second operation (the multiplicative operation). (117)

Def: A commutative ring is a ring where the second operation is commutative. (117)
Def: A subring is a nonempty subset S of a ring $(R,+, \cdot)$ such that $(S,+, \cdot)$ is a ring (under the same operations as R.) (119)
Proposition 34: To prove that $(S,+, \circ)$ is a subring of $(R,+, \cdot)$ we need to prove that (119)

1. $S \subseteq R$ (set containment)
2. $\forall a, b \in S \quad(a+b) \in S$ (closure under additive operation)
3. $\forall a, b \in S \quad(a \cdot b) \in S$ (closer under multiplicative operation)
4. $\forall a \in S \quad(-a) \in S$ (additive inverses exist in S)

Def: A ring $(R,+, \cdot)$ has zero divisors iff $\exists a, b \in R$ such that $a \neq 0, b \neq 0$, and $a \cdot b=0$. (120)
Def: In a ring $(R,+, \cdot)$ with identity, an element r is invertible iff $\exists r^{-1} \in R$ such that $r \cdot r^{-1}=r^{-1} \cdot r=1$ (the multiplicative identity). (121)
Proposition 35: Let R^{*} be the set of all invertible elements of R. If $(R,+, \cdot)$ is a ring with identity then $\left(R^{*}, \cdot\right)$ is a group, known as the group of invertible elements. (121)
Proposition 36: Let $(R,+, \cdot)$ be a ring with identity such that $R \neq\{0\}$. The elements 0 and 1 are distinct. (122)
Proposition 37: A ring $(R,+, \cdot)$ has no zero divisors iff the cancellation law for multiplication holds. (123)

Corollary 38: Let $(R,+, \cdot)$ be a ring with identity which has no zero divisors. The only solutions to $x^{2}=x$ in the ring are $x=0$ and $x=1 .(123)$

Def: An integral domain is a commutative ring with identity which has no zero divisors. (124)
Def: A field $(F,+, \cdot)$ is a set F together with two operations such that (125)

- $(F,+)$ is an abelian group,
- $(F-\{0\}, \cdot)$ is an abelian group, and
- - distributes over + .

In other words, a field is a commutative ring with identity in which every nonzero element has an inverse.

[^0]
[^0]: Back to intro and comments page: http://www.glump.net/archive/000024.php
 Back to home page:
 http://www.glump.net/

