Abstract Algebra Cheat Sheet

16 December 2002

By Brendan Kidwell, based on Dr. Ward Heilman's notes for his Abstract Algebra class.

Notes: Where applicable, page numbers are listed in parentheses at the end of a note.

Def: A **group** is a nonempty set *G* together with a binary operation * on $G \times G$ satisfying the following four properties:

- 1. G is closed under the operation *.
- 2. The operation * is associative.
- 3. G contains an identity element, \mathbf{e} , for the operation *.
- 4. Each element in G has an inverse in G under the operation *.

Proposition 1: A group has exactly one identity element.

Proposition 2: Each element of a group has exactly one inverse element.

Proposition 3: $(a*b)^{-1}=b^{-1}*a^{-1} \quad \forall a, b \in (G, *)$.

Proposition 4: $(a^{-1})^{-1} = a \quad \forall a \in (G, *)$.

Proposition 5: $(\mathbb{Z}_n, +_n)$ is a group $\forall n \in \mathbb{N}$.

Proposition 6: In a group table, every element occurs exactly once in each row and exactly once in each column.

Def: The order of a group (G, *) is the number of elements in the set G. (Written as |G|.) (36)

Def: A **dihedral group** of order 2n is the set of symmetric transformations of a regular n-gon. (Written as D_n .) (36)

Def: An **abelian** (or **commutative**) group has the property that $a * b = b * a \quad \forall a, b \in (G, *)$. (37)

Def: (H, *) is a **subgroup** of (G, *) iff $H \in G$ and (H, *) is a group under the same operation. (37) To show that (H, *) is a subgroup, show that $H \in G$ and then show closure and existence of inverses.

Lagrange's Theorem: Let (H, *) be a subgroup of a finite group, (G, *). |H| divides |G|.

Def: $\langle a \rangle = \{a^0, a^1, a^{-1}, a^2, a^{-2}, a^3, a^{-3}...\}$ is the **cyclic subgroup** generated by *a*.

Def: The order of an element, *a*, is the order of $\langle a \rangle$.

Def: A cyclic group is a group that can be generated entirely by repeatedly combining a single element with itself. In other words, if for a cyclic group $G = \langle a \rangle$, then *a* is the **generator** of *G*.

Def: **Prime Order Proposition.** For every prime *p*, there is exactly one group of order *p*.

Proposition 8: Cancellation Laws. Let $a, b, c \in (G, *)$.

- 1. $(a*b=a*c) \rightarrow (b=c)$
- 2. $(b*a=c*a) \rightarrow (b=c)$
- 3. If G is abelian, $(a*b=c*a) \rightarrow (b=c)$

Proposition 9: The only solution to a * a = a is a = e.

Proposition 10: Let $a, b \in G$. If $a * b \neq b * a$, then e, a, b, a * b, b * a are all distinct elements. (50)

Proposition 11: Any non-abelian group has at least six elements. (51)

Def: The center of a group is $Z(G) = \{ all \ g \in G \text{ such that } (g * a = a * g \quad \forall a \in G) \}$.

Proposition 12: (Z(G), *) is a subgroup of G. (52)

Def: Two integers, *a* and *b*, are **relatively prime** iff gcd(a, b)=1. (54)

Def. $\forall n \in \mathbb{N}$, the set of units of *n*, $\mathbf{U}(n)$, is the set of all natural numbers relatively prime to *n*. (54)

Proposition 13: $\forall n \in \mathbb{N}$, $(\mathbf{U}(n), \cdot_n)$ is a group. (54)

Def: For any set *S* and subsets *A*, $B \in S$, the **symmetric difference** of *A* and *B* (written as $A \Delta B$) is the set of all elements that are in *A* or *B*, but are not in both *A* and *B*. In other words, $A \Delta B = (A-B) \cup (B-A)$. (55)

Def: The **power set** of *S* (written as P(S)) is the set of all subsets of *S*, including \mathscr{D} and the original set *S*. (55)

Proposition 14: For any nonempty set *S*, $(P(S), \Delta)$ is a group. (55)

Def: Let (G, *) and (K, \circ) be two groups. Let f be a function from G to K. f is a **homomorphism** (or operation preserving function) from (G, *) to (K, \circ) iff $\forall a, b \in G$ $f(a*b) = f(a) \circ f(b)$. (59)

Proposition 15: Let $f: G \to K$ be a homomorphism. Let e be the identity of (G, *) and e' be the identity of (K, \circ) . (60)

1. $f(\boldsymbol{e}) = \boldsymbol{e}'$ 2. $f(g^{-1}) = (f(g))^{-1} \quad \forall g \in G$ 3. $f(g^n) = (f(g))^n \quad \forall n \in \mathbb{Z}$

Def: Given nonempty sets S and T, with x, $y \in S$, and a function $f: S \to T$ (63)

1. *f* is a **one-to-one** (1-1) function iff $(x \neq y) \rightarrow (f(x) \neq f(y))$. 2. *f* is **onto** *T* iff $\forall z \in T \exists x \in S$ such that f(x) = z.

Proposition 16: Let $f: S \to T$ be an onto function. (65)

1. $f(f^{-1}(V)) = V \quad \forall V \subseteq T$ 2. $W \subseteq f(f^{-1}(W)) \quad \forall W \subseteq S$

Proposition 17: Let *f* be a homomorphism from (G, *) to (K, \circ) . (68)

1. If (H, *) is a subgroup of (G, *), then $(f(H), \circ)$ is a subgroup of (K, \circ) . 2. If (L, \circ) is a subgroup of (K, \circ) , then $(f^{-1}(L), *)$ is a subgroup of (G, *).

Def: (Using the previous example,) the image of H under f is f(H). The inverse image of L under f is $f^{-1}(L)$. (68)

Proposition 18: Let *f* be a homomorphism from (G, *) to (K, \circ) . *f* is one-to-one iff ker $(f) = \{e\}$. (72)

Def: Two groups, (G, *) and (K, \circ) , are **isomorphic** iff there exists a one-to-one homomorphism f from (G, *) onto (K, \circ) —that is, f(G)=K. In this case, f is called an **isomorphism** or **isomorphic** mapping. (73)

Proposition 19: Every finite cyclic group of order *n* is isomorphic to $(\mathbb{Z}_{n} + n)$ and every infinite cyclic group is isomorphic to $(\mathbb{Z}, +)$. (75)

Proposition 20: Every subgroup of a cyclic group is cyclic. (76)

Theorem: If G is a finite group, p is a prime, and p^k is the largest power of p which divides |G|, then G has a subgroup of order p^k .

Def: A **permutation** is a one-to-one and onto function from a set to itself. (77)

Note: See pages 78 and 81 for examples of how to notate permutations.

Def: The set of permutations on $\{1, 2, 3, ..., n\}$ is written as S_n . (79)

Theorem 21: The set of all permutations together with composition, $(S_n \circ)$, is a nonabelian group $\forall n \geq 3$. (79)

Theorem 22: The set of all permutations on a set S (its symmetries), together with composition, $(\text{Sym } S, \circ)$, is a group. (80)

Theorem 23 (Cayley's Theorem): Every group is isomorphic to a group of permutations. (82)

Proposition 24: Every permutation can be written as a product of disjoint cycles in permutation notation. (86)

Def: The **length** of a cycle in a permutation is the number of distinct objects in it. A cycle of length 2 is a **transposition**. (86)

Proposition 25: Every cycle can be written as a product of transpositions (not necessarily distinct). (87)

Def: A permutation is **even** (or **odd**) if it can be written as a product of an even (or odd) number of transpositions. (88)

Def: The subset of S_n which consists of all the even permutations of S_n is called the **alternating** group on *n* and is written as A_n . (90)

Def: **Matrix multiplication**, which is not commutative, is the standard way to combine matrices. To multiply a **2×2 matrix**: (102)

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a e + b g & a f + b h \\ c e + d g & c f + d h \end{bmatrix}$$

Notes: A 2×2 matrix can be found to represent any linear transformation. The special matrix

$$M = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

when mulpilied on the left with a vector in \mathbb{R}^2 will rotate it counterclockwise by the amount α : $M X_{initial} = X_{rotated}$. (100)

Def: The inverse under multiplication of a 2×2 matrix is computed as follows: (103)

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \begin{bmatrix} \frac{d}{ad-bc} & \frac{-b}{ad-bc} \\ \frac{-c}{ad-bc} & \frac{a}{ad-bc} \end{bmatrix}$$

Def: The **determinant of a 2×2 matrix** is computed as follows: (104)

$$\det\left(\begin{bmatrix}a&b\\c&d\end{bmatrix}\right) = a\,d - b\,c$$

Def: A matrix is **invertible** iff its determinant is nonzero. (104)

Theorem 29: The set of all invertible 2×2 made from elements of \mathbb{R} , together with matrix multiplication, forms a group, called the **general linear group**, which is written as $GL(2,\mathbb{R})$. (105)

Def: The **special linear group** is the group of 2×2 matrices with determinants of 1, written as $SL(2, \mathbb{R})$. (106)

Def: To get the **transpose** of a matrix, swap each element $a_{i,j}$ with the one on the opposite side of the main diagonal, $a_{j,i}$. The transpose of a matrix *M* is written M^{t} . (106)

Def: A matrix *M* is **orthogonal** iff $M^{t}M = I$. (106)

Theorem 30: The set of orthogonal 2×2 matrices with determinant 1 together with matrix multiplication form a the **special orthogonal group**, which is written as $SO(2,\mathbb{R})$. The set of orthogonal matrices together with matrix multiplication is also a group, the **orthogonal group**, which is written as $O(2,\mathbb{R})$. $SO(2,\mathbb{R})$ is a subgroup of $O(2,\mathbb{R})$. (107)

Proposition 31: For two matrices *A* and *B*, (107)

1. $(AB)^{t} = B^{t} A^{t}$ 2. $(A^{t})^{-1} = (A^{-1})^{t}$ 3. det (AB) = det $A \cdot$ det B4. det $(A^{t}) =$ det A5. det $(A^{t}A) =$ det $A^{t} \cdot$ det A = det $A \cdot$ det A = (det A)² Fact 32: $SO(2, \mathbb{R}) = \left\{ \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \forall \text{ angle } \alpha \right\}$ Def. Given a set C and an equation of α (112)

Def: Given a set G and an operation *: (113)

G is a groupoid iff G is closed under *.

G is a semigroup iff G is a groupoid and * is associative.

G is a semigroup with identity iff G is a semigroup and has an identity under *.

G is a group iff G is a semigroup and each element has an inverse under *.

Def: A ring, written $(R, *, \circ)$, consists of a nonempty set R and two opertaions such that (114)

- (R, *) is an abelian group,
- (\mathbf{R}, \circ) is a semigroup, and
- the semigroup operation, \circ , distributes over the group operation, *.

Proposition 33: Let $(R, +, \cdot)$ be a ring. (115)

- 1. $0 \cdot a = a \cdot 0 = 0 \quad \forall a \in R$
- 2. $(-a) \cdot b = a \cdot (-b) = -(a \cdot b) \quad \forall a, b \in \mathbb{R}$
- 3. $(-a)\cdot(-b)=a\cdot b \quad \forall a, b \in \mathbb{R}$

Def: A **ring with identity** is a ring that contains an indentity under the second operation (the multiplicative operation). (117)

Def: A commutative ring is a ring where the second operation is commutative. (117)

Def: A subring is a nonempty subset S of a ring $(R, +, \cdot)$ such that $(S, +, \cdot)$ is a ring (under the same operations as R.) (119)

Proposition 34: To prove that $(S, +, \circ)$ is a subring of $(R, +, \cdot)$ we need to prove that (119)

- 1. $S \subseteq R$ (set containment)
- 2. $\forall a, b \in S \ (a+b) \in S$ (closure under additive operation)
- 3. $\forall a, b \in S \ (a \cdot b) \in S$ (closer under multiplicative operation)
- 4. $\forall a \in S \ (-a) \in S \ (additive inverses exist in S)$

Def: A ring $(R, +, \cdot)$ has zero divisors iff $\exists a, b \in R$ such that $a \neq 0, b \neq 0$, and $a \cdot b = 0$. (120)

Def: In a ring $(R, +, \cdot)$ with identity, an element *r* is **invertible** iff $\exists r^{-1} \in R$ such that $r \cdot r^{-1} = r^{-1} \cdot r = 1$ (the multiplicative identity). (121)

Proposition 35: Let R^* be the set of all invertible elements of R. If $(R, +, \cdot)$ is a ring with identity then (R^*, \cdot) is a group, known as the group of invertible elements. (121)

Proposition 36: Let $(R, +, \cdot)$ be a ring with identity such that $R \neq \{0\}$. The elements 0 and 1 are distinct. (122)

Proposition 37: A ring $(R, +, \cdot)$ has no zero divisors iff the cancellation law for multiplication holds. (123)

Corollary 38: Let $(R, +, \cdot)$ be a ring with identity which has no zero divisors. The only solutions to $x^2 = x$ in the ring are x=0 and x=1. (123)

Def: An integral domain is a commutative ring with identity which has no zero divisors. (124)

Def: A field $(F, +, \cdot)$ is a set *F* together with two operations such that (125)

- (F, +) is an abelian group,
- $(F \{0\}, \cdot)$ is an abelian group, and
- • distributes over +.

In other words, a field is a commutative ring with identity in which every nonzero element has an inverse.

Back to intro and comments page: Back to home page:

http://www.glump.net/archive/000024.php http://www.glump.net/